
SUPPORTING INFORMATION

1 Connected vs non-connected correlation

The most basic kind of correlation one can measure in a system is the scalar product of the velocities of two
different individuals, ~vi · ~vj . This quantity is large if velocities are pointing in the same direction and low if they are
uncorrelated. This is what is called non-connected correlation, and it has a problem: its value is trivially dominated
by the mean motion of the system. Imagine that a gust of wind shifts the entire swarm, so that each midges’s velocity
is dominated by the wind speed. As an effect of the wind, midges i and j would be moving nearly parallel to each
other, so that the non-connected correlation would be high. This, however, is simply an effect of the wind, and it
is not a genuine sign of correlation, nor of interaction between the individuals. The same thing would happen in a
system of uncorrelated particles put in rotational motion around an axis: velocities of nearby particle are mostly
parallel as a mere effect of the overall rotation.

These examples show that, in order to get information about the bona fide interaction between individuals, we
need to compute the correlation between the fluctuations around the mean motion of the system. In other words,
what we want to detect is to what extent the individual changes of behaviour with respect to the global behaviour
of the system are correlated. This is what the connected correlation does and it is the only reliable measure of
correlation in a system. The presence of a non-connected correlation is not in general proof of anything at the
level of the interaction, as the wind example clearly shows. On the other hand, the presence of non-zero connected
correlation in a system is an unambiguous proof that there is interaction, and strong enough to produce collective
effects.

Let us explain this fact by using again the wind example: if the only reason for the overall motion of the swarm
is the wind, then the connected correlation function vanishes, showing that there is no real self-organization in the
system; if, on the other hand, the overall group motion is due to self-organization, as it happens in starling flocks,
then the connected correlation function does not vanish [1], because not only the directions of motions are correlated,
but also the fluctuations with respect to these directions are correlated. Hence, the connected correlation function is
able to distinguish these two drastically different cases (collective motion due to an external cause vs. self-organized
collective motion), whereas the non-connected correlation would be large in both cases. This is the reason why the
non-connected correlation function is the wrong tool to probe self-organization.

To compute the connected correlation function we therefore need to identify the collective modes of motion of the
system and subtract them from the individual motion (see Methods). In this way we obtain the velocity fluctuation,
namely the velocity of midge i in a reference frame that not only is co-moving with the centre of mass, but also
rotating and expanding/contracting as the whole swarm. Therefore, what is left is the deviation of i from the mean
group motion, which is the only quantity that is safe to correlate.

It is very important to realize that an error or an artefact in computing the fluctuations can lead to spurious
values of the correlation. As an example, consider two different and unrelated swarms moving in opposite directions,
because of some weird fluctuation of the wind. If we fail to notice that these are two systems and analyse our data
as if they were one, we get a zero net motion of the centre of mass. Hence, the velocity fluctuations are equal to the
full velocities, and we are effectively computing a non-connected correlation, rather than a connected one, giving the
delusion of very large correlation.

In the main text we show that swarms are mostly disordered. However, the fact that order parameters are low on
average, does not mean that we can use the full velocities to compute the correlation function. As we have already
said, a brief gust of wind can push the non-connected correlation function to very high values. In this study, we are
not investigating the origin of the order parameters fluctuations, but we focus on correlations. Hence, we have to be
sure that correlation is computed in a way to avoid any spurious signal from the collective modes.
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2 Susceptibility, response and correlation

In a stationary system, it can be proven [2] that the susceptibility is equal to the collective response of the system to
uniform external perturbations. Maximum entropy calculations [3] show that the stationary probability distribution
of the velocities in systems where there is an alignment interaction is given by,

P (v) =
1

Z
eJ

∑
i,j ~vi·~vj , (1)

where J is the strength of the interaction (depending on the distance r in a metric system) and Z is a normalizing
factor (the partition function),

Z =

∫
Dv eJ

∑
i,j ~vi·~vj . (2)

where Dv indicates that Z is a volume integral over the space of the velocities, Dv =
∏

i δvi. If an external
perturbation (or field) h couples uniformly to all velocities, this distribution gets modified as,

P (v) =
1

Z(h)
eJ

∑
i,j ~vi·~vj+~h·

∑
i ~vi . (3)

Now we ask what is the collective response χ of the system to a small variation of the perturbation h. To answer
this question we calculate the variation of the global order parameter, i.e. of the space average of the velocity, under
a small variation of h. We have,

χ =
∂

∂h
〈 1

N

∑
k

vk〉

=
∂

∂h

∫
Dv P (v)

1

N

∑
k

vk

=
1

N

∑
i,k

∫
DvP (v)vkvi −

∫
DvP (v)vi

∫
DvP (v)vk

=
1

N

∑
i,k

〈vkvi〉 − 〈vi〉〈vk〉 =
1

N

∑
i,k

〈δvk δvi〉 , (4)

where we have disregarded the vectorial nature of the quantities not to burden the notation, and where we have
defined,

〈f(v)〉 =

∫
DvP (v)f(v) . (5)

Apart from the missing normalization, needed to make χ dimensionless, the quantity in (4) is exactly the susceptibility
defined in the main text, equation (2).

Let us now analyse in detail the relation between correlation function and susceptibility in a finite size system,
where instead of the ensemble averages, 〈·〉, we can only perform space averages. From equations (1) and (2) in main
text, we obtain:

Q(r) =
1

N

∫ r

0

dr′
N∑
i 6=j

δ(r′ − rij)C(r′) . (6)

If we make the hypothesis that mass fluctuations are not strong, we can write,

1

N

N∑
i6=j

δ(r′ − rij) ∼ 4πx2ρ , (7)

where ρ is the density. Hence, we get,

Q(r) =
3

r31

∫ r

0

dr′ r′2 C(r′) , (8)

where we have used the simple relationship between density and nearest neighbours distance, 4πρ = 3/r31. In an
infinitely large system, the bulk susceptibility is simply, χ∞ = Q(r → ∞), that is the full volume integral of the

connected correlation function. In a finite size system, however, due to the constraint,
∑

i
~δϕi = 0, we must have,

Q(r = L) = −1 , (9)

2



for all systems, be they natural or synthetic, irrespective of the amount of real correlation. This relation is simply the
mathematical consequence of the way velocity fluctuations are defined. Therefore, in a finite system the susceptibility
can be estimated as the maximum value reached by Q(r) (this maximum is a lower bound for the bulk susceptibility).
We know that, C(r0) = 0, so that the function Q(r) reaches its maximum at r = r0. Hence the finite size susceptibility
is given by,

χ = Q(r0) =
3

r31

∫ r0

0

dr r2 C(r) . (10)

Species Event label N Duration (s) l (mm) r1 (m) r0 (m) |~v| (m/s) χ φ

Corynoneura
scutellata - CS
(Diptera:Chironomidae)

20110906 A3 138 2.0 1.5 0.029 0.094 0.12 0.78 0.17
20110908 A1 119 4.4 1.1 0.036 0.105 0.13 0.46 0.27
20110909 A3 312 2.7 1.5 0.026 0.138 0.12 2.58 0.22

Cladotanytarsus
atridorsum - CA
(Diptera:Chironomidae)

20110930 A1 173 5.9 2.4 0.057 0.228 0.23 1.48 0.31
20110930 A2 99 5.9 2.4 0.063 0.223 0.15 1.08 0.20
20111011 A1 131 5.9 2.4 0.075 0.272 0.11 0.65 0.17
20120828 A1 89 6.3 2.5 0.062 0.188 0.17 0.48 0.22
20120907 A1 169 3.2 1.9 0.062 0.330 0.13 1.72 0.20
20120910 A1 219 1.7 2.4 0.047 0.221 0.19 2.25 0.27
20120917 A1 192 0.36 2.2 0.043 0.219 0.12 2.09 0.14
20120917 A3 607 4.23 2.2 0.033 0.259 0.10 5.57 0.15
20120918 A2 69 15.8 1.7 0.060 0.174 0.15 0.64 0.23
20120918 A3 214 0.89 1.7 0.041 0.230 0.20 2.04 0.36

Dasyhelea
flavifrons - DF
(Diptera:Ceratopogonidae)

20110511 A2 279 0.9 2.3 0.053 0.248 0.20 1.25 0.35
20120702 A1 98 2.1 2.0 0.062 0.162 0.14 0.69 0.20
20120702 A2 111 7.3 2.0 0.056 0.169 0.13 0.88 0.18
20120702 A3 80 10.0 2.0 0.060 0.170 0.12 0.32 0.20
20120703 A2 167 4.4 1.8 0.046 0.140 0.07 0.52 0.12
20120704 A1 152 10.0 1.7 0.050 0.154 0.09 0.63 0.15
20120704 A2 154 5.3 1.7 0.053 0.160 0.08 0.61 0.13
20120705 A1 188 5.9 1.8 0.055 0.182 0.12 0.92 0.20

Table 1. Swarm data. Each line represents a different swarming event (acquisition). N is the number of
individuals in the swarm, r1 the time average of the nearest neighbour distance in the particular acquisition, r0 the
average correlation length, χ the average susceptibility and φ the average polarization.
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